
Thermally activated escape of driven systems: the activation energy

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 L321

(http://iopscience.iop.org/0305-4470/32/27/105)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:36

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/27
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) L321–L327. Printed in the UK PII: S0305-4470(99)03784-1

LETTER TO THE EDITOR

Thermally activated escape of driven systems: the activation
energy

D G Luchinsky†‖, R Mannella†¶, P V EMcClintock†, M I Dykman‡ and
V N Smelyanskiy§
† Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
‡ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824,
USA
§ Caelum Research Co., NASA Ames Research Center, MS 269-2, Moffett Field, CA
94035-1000, USA
‖ Russian Research Institute for Metrological Service, Ozernaya 46, 119361 Moscow, Russia
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Abstract. Thermally activated escape in the presence of a periodic external field is investigated
theoretically and through analogue experiments and digital simulations. The observed variation
of the activation energy for escape with driving force parameters is accurately described by the
logarithmic susceptibility(LS). The frequency dispersion of the LS is shown to differ markedly from
the standard linear susceptibility. Experimental data on the dispersion are in quantitative agreement
with the theory. Switching between different branches of the activation energy is demonstrated for
a nonsinusoidal (biharmonic) force.

Thermally activated escape plays a fundamentally important role in a variety of phenomena,
ranging from diffusion in solids and on solid surfaces to chemical reactions. It is therefore
important to find ways of controlling escape rates. One possible approach is through the
application of an ac field, which can sometimes give rise to a very strong response. The
underlying mechanism is readily understood for low-frequency (adiabatically slow) driving,
where the system remains in quasi-equilibrium under the instantaneous value of the driving
force. For a system in thermal equilibrium, the probability of a large fluctuation is given by

W ∝ exp[−R/kT ]. (1)

We will be specifically interested in activated escape, in which caseR is the activation energy
of escape. The driving force modulates the value ofR quasistatically and, even where the
modulation amplitudeA is small compared withR, it may still substantially exceedkT , in
which caseW will be changed exponentially strongly. We emphasize that the change of the
activation energy islinear in the field amplitude in this case.

A different picture might be expected for higher field frequencies, where the driving
becomes nonadiabatic. One might suppose that any change inR would depend on theintensity
I of the driving field rather than just be linear in the fieldamplitudeA ∝ I 1/2, i.e., that the field
would give rise to an effective ‘heating’ of the system. Such an effect has indeed been discussed
and observed for low field intensities [1–4]. A complete theoretical analysis is significantly
more complicated in this case, since one may no longer assume that the system is in thermal
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equilibrium, so that the activation energyR in equation (1) may not be set equal to the height
of the free-energy barrier. Numerical results in relation to this problem have been obtained for
different models: see [5] and references therein.

For high-frequency driving, the quantity of primary interest is the period-averaged escape
rateW̄ . Recently it was suggested theoreticallly [6, 7] that, for high-frequency driving lnW̄

should still be linear in the field amplitudeA, i.e. that the activation energyR in equation (1)
for W̄ should—quite counterintuitively—be linear inA. The proportionality coefficient was
called thelogarithmic susceptibility(LS).

Just like the conventional linear susceptibility, the LS relates the response of the system in
the presence of external driving to the system dynamics in thermal equilibrium in the absence of
the driving field. Also, in common with the conventional susceptibility, the LS should display
frequency dispersion. This dispersion provides a basis for the selective control of escape rates.

The goals of this letter are, first, to validate the idea of the LS, thereby providing a solid
experimental basis for understanding the effect of an ac field on escape rates and, secondly, to
develop a general theory of thefrequency dispersionof the LS. The theory exploits the acausal
character of the LS for escape. The measurements are done through analogue electronic
experiments [8] and digital simulations [9] of the escape rate in a driven system. Results of
such experiments are reported below for a broad range of frequencies and amplitudes of the
driving field, as well as for a nonsinusoidal field. We provide detailed comparisons of the data
with the theory. An additional important aim of the paper is to show that, given a system, its
LS can be measured directly by experiment. This paves the way for using ac fields for selective
control of escape rates (and also of diffusion and nucleation [6,7]), even where the dynamics
of the system are not known and have to be determined experimentally.

We consider fluctuations of an overdamped Brownian particle driven by a periodic (but
not necessarily sinusoidal) forceF(t) and white Gaussian noiseξ(t),

q̇ = K(q, t) + ξ(t) K(q, t) = −U ′(q) + F(t) (2)

where〈ξ(t)ξ(t ′)〉 = 2Dδ(t − t ′). The noise intensityD = kT if relaxation and fluctuations
are due to coupling to a thermal bath at temperatureT .

The model (2) is used in many scientific contexts (see e.g. [10–12] and references therein).
We assume that the potentialU(q) in (2) has a metastable minimum from which the system
can escape. For convenience, experimental data are obtained for a potential with two wells,
so that forF(t) = 0 the system is bistable and can switch between the stable states due to
fluctuations.

The idea underlying the theory of the LS [6,7] is that, although the motion of the fluctuating
system is random, in a large rare fluctuation from a metastable state to a remote state, or in a
fluctuation resulting in escape, the system is most likely to move along a particular trajectory
known as the optimal, or most probable path (see [13–17] and references therein). This path
provides a minimum to the functional

R[q] = 1
4

∫ ∞
−∞

dt [q̇ −K(q, t)]2. (3)

The minimum is taken over all instanton-type [18] trajectories which start fort →−∞ from
the stable periodic stateqa(t) of the dynamical systeṁq = K(q, t), and approach the unstable
periodic state of this systemqb(t) ast →∞.

In the absence of driving (F = 0) the variational problem has a simple solutionq(0)(t),
which is given by the equation

q̇(0) = U ′(q). (4)
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Clearly, the most probable escape path (4) is just the time-reversed path from the unstable
steady state at the topqb of the potential barrierU(q) down to the potential minimum at
qa [19,20]. The value ofR[q] in this case is equalU(qb)− U(qa).

If the periodic driving forceF(t) =∑k Fk exp(ikωt) is comparatively weak, the leading-
order correctionδR to the activation energy of escape can be evaluated along the unperturbed
most probable escape pathq(0)(t)

δR = min
tc
δR(tc) δR(tc) =

∑
k

Fkχ̃(kω)e
ikωtc

χ̃ (ω) = −
∫ ∞
−∞

dt q̇(0)(t)eiωt .
(5)

Here,χ̃(ω) is the LS for escape. It is given [6,7] by the Fourier transform of the velocity along
the most probable escape pathq(0)(t) in the absence of driving (F(t) = 0).

Equation (5) can be understood in terms of thework that the field does on the system as
it moves along the optimal path. One may expect this work to be related to the field-induced
change in the activation energyR for the corresponding large fluctuation. This change islinear
in the field, provided that the field-induced change of the optimal path itself remains small.

An important feature of equation (5) is the minimization overtc. It corresponds to choosing
the position of the centre of the instantonic escape pathq(0)(t− tc) so as to maximize the work
the fieldF(t) does on the system along it.

Unlike the standard linear susceptibility [21] which, on causality arguments, is given by
a Fourier integral over time from 0 to∞, the LSχ̃(ω) is given by an integral from−∞ to
∞. The analytic properties of̃χ(ω) therefore differ from those of the standard susceptibility,
and in particular their high-frequency asymptotics arequalitativelydifferent. The standard
susceptibility for damped dynamical systems decays as a power law for largeω (e.g., as
1/[U ′′(qa)− iω], for the model (2)). In contrast, from (5), the LS decreasesexponentiallyfast.

Asymptotic behaviour of̃χ(ω) for large positiveω can be found by shifting the contour of
integration in (5) overt from the real axis to the upper half of the complext plane, as shown in
figure 1. The functioṅq(0)(t) (4) has poles or branching points at Imt 6= 0, which correspond
to the singularities ofU ′(q) in the complexq-plane, i.e. for Imq 6= 0. For largeω, the major
contribution toχ̃(ω) is determined by the parts of the integration contour in figure 1 near the
singularity of q̇(0)(t) with the smallest value of Imt = τp. Near the singular point one can
change from integrating overt to integrating overq, which gives for exp(ωτp)� 1

χ̃(ω) = Me−|ω|τp τp = min

∣∣∣∣Im ∫
dq/U ′(q)

∣∣∣∣. (6)

Here, the integral is taken from any point in the interval(qa, qb) to the (complex) positionqp of
the appropriate singularity ofU ′(q) corresponding to the singularity ofq̇(0)(t−tc) at Imt = τp.
The prefactorM depends on the form ofU(q) nearqp. In particular, for a polynomial potential
(|qp| → ∞) with U(q) = Cqn/n for |q| → ∞, we have

|M| = 2π |ω/C|ν |ν|ν+1/ν! ν = 1/(n− 2). (7)

Figure 1. Contour of integration over time in (5) for the analysis of the
behaviour of the logarithmic susceptibilitỹχ(ω) for large positiveω; τp is
the smallest imaginary value oft whereq̇(0)(t) has a singularity.
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Figure 2. The dependence of the activation energyR on the amplitudeA of the harmonic
driving forceF(t) = A cos(1.2t) as determined by electronic experiment (open circles), numerical
simulation (filled circles) and analytic calculation (solid line) based on (5); the dash-dotted line is
a guide to the eye. Inset: the absolute value of the LS of the system|χ̃(ω)| (5) measured (open and
filled squares for experiment and numerical simulation, respectively) and calculated (full curve) as
a function of frequencyω.

This expression applies also for finite|qp|, with U(q) ≈ C/µ(q − qp)µ for q → qp, if n in
(7) is replaced by−µ: note that|M| then decreases with increasingω.

The notion of the LS applies not only to escape, but also to the probability of a large
fluctuation to any given state, in which case the integral over time in (5) is taken to the moment
of arrival in this state, and there is no minimization overtc [7]. The analytic properties of this
LS are similar to those of the standard linear susceptibility.

We have investigated the escape rate for a driven Duffing oscillator with the potential
U(q) = −q2/2 +q4/4. If the state occupied initially isqa = −1, we obtain from (5)

q̇(0)(t) = exp(2t)[1 + exp(2t)]−3/2. (8)

and therefore the LS

χ̃(ω) = −π−1/20

(
1− iω

2

)
0

(
2 + iω

2

)
. (9)

It follows from (9) thatχ̃(0) = −1, and the LS decays monotonically with increasingω, with
τp = π/2,M = −(1 + i)(πω)1/2 in (6). Already forω > 0.7 the asymptotic behaviour of
|χ̃(ω)| given by (6) becomes very close to the exact result equation (9) which is shown with a
solid curve in the inset of figure 2.

The period-averaged rate of escape from the stable stateqa can be found conveniently in
experiment from measurements of the mean time〈t〉 to reach a pointqe well behind the barrier
top (so that the probability of returning to the vicinity ofqa is negligibly small). Our main
quantity of interest is the field-dependent correction toW̄ = 1/〈t〉. It is given by exp(−δR/D)
for |δR| � D [6,7,22]. For a sinusoidal driving force, the correction to the activation energy
of escape (5) isδR = −2|F1χ̃(ω)|.

To test these predictions, we built an analogue electronic model [8] of (2) for the double-
well Duffing potential. We drove it with zero-mean quasi-white Gaussian noise from a
shift-register noise generator, digitized the responseq(t), and analysed it with a digital data
processor. We also carried out a complementary digital simulation, using a high-speed pseudo-
random generator [9].
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The analogue and digital measurements ofR involved noise intensities 0.028 < D <

0.036 and 0.020< D < 0.028, respectively; the lowest (real time [8]) driving frequency used
was 460 Hz. The results are plotted in figure 2. The major observation is that, as predicted,R

is indeedlinear in the force amplitude (R = 1
4 for F = 0). The slope yields the absolute value

of the LS. Its frequency dependence, a fundamental characteristic of the original equilibrium
system, is compared with the theoretical predictions in the inset of figure 2.

The results demonstrate that the variation of the activation energy with field can be well
described analytically, for a wide range of parameter values, in terms of the LS. We note,
however, a small deviation from the theory at small amplitudes of the external drive, and the
consequent systematic shift of the experimental and numerical points above the theory (solid
line). This deviation arises as a result of the finite noise intensities used in the experiment,
and the fact that theD → 0 limit of the theory breaks down for amplitudesF of the external
driving for which|χF |/D is small; it can be accounted for by an extension [22] of the theory
taking account of changes in the prefactor.

We now discuss some of the new effects that are to be expected [6] when the driving
field is nonsinusoidal. They are related to the minimization overtc in (5), which is what
makes the logarithm of the escape rate a nonanalytic function ofF(t) in theD → 0 limit.
We can apply the theory (5) to describe the dependence of the activation energy on field
parameters. In particular, we seek experimentally theswitchingbetween escape paths that
is predicted [6] for a simple form of nonsinusoidal driving: the biharmonic field. We took
F(t) = 0.1 cos(1.2t) + 0.3 cos(2.4t + φ0) and investigated the effect of altering the phase
differenceφ0 between the two sinusoidal components. For a field of this kind,δR(tc) (5) may
have two local minima; but the activation energy will of course correspond to itsabsolute
minimum. Thus, asφ0 is changed, the escape path will switch from being determined by one
local minimum to being determined by the other, analogous to a first-order phase transition in
which δR andtc play the roles of the free energy and the order parameter, respectively.

This phenomenon can be demonstrated experimentally by direct observation of the two
different escape paths† providing the two local minima ofδR(tc). Within a critical range of
φ0, the two escape paths should coexist and be observable experimentally: by variation of the
phase difference near its critical value within this range, one should observe switching between
the two different escape paths. The effect is clearly evident in the analogue data of figures 3(a)
and (b): a small change inφ0 is sufficient to switch the predominant escape path fromφ ' 1
in (a) to φ ' 5 in (b).

It follows from the above analysis that the absolute value of the logarithmic susceptibility
can be recovered from measurements of the correctionδR to the escape activation energy at
different frequencies of a sinusoidal driving field. Thephaseof the LS argχ̃(ω) can be found
by measuringδR for a driving field with more than one harmonic. In particular, for biharmonic
driving with period 2π/ω, we see from equation (5) thatδR depends on the phase of LS in
terms of the factor2(ω) = 2 argχ̃(ω)− argχ̃(2ω). The solution of this functional equation
for argχ̃(ω), with the boundary condition argχ(0) = 0, has the form

argχ̃(ω) = ωtc +
∞∑
k=0

2−k−12(2kω). (10)

This expression relates argχ̃(ω) to the values of2 at the subharmonics 2−kω of the frequency
ω (due to the analyticity ofχ(ω) atω → 0, the function2(ω) is quadratic inω for ω → 0,
and therefore the series (10) converges).

† The coexistence of different escape paths in nonequilibrium systems has been widely discussed. See e.g. [23–25]
for theory, and [20,26] for theory and experimental tests.
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Figure 3. Sections atq = −0.5 through the prehistory distribution,ph, of escape paths from the
attractor atq = −1, measured (histograms) in the analogue electronic experiment for two phase
differences of the biharmonic driving force close to the critical value ofφ0 = 3.57: (a) φ0 = 3.04;
and (b) φ0 = 4.04. The smooth curves represent the theory. It is evident that, within the critical
range, a small change inφ0 is sufficient to cause switching of the dominant escape path.

In conclusion, we have shown experimentally that thermally activated escape under
nonequilibrium conditions can be understood in terms of the logarithmic susceptibility, and that
the latter is a physically observable quantity: the field-induced change of the activation energy
for escape islinear in the field amplitude [6,7] even where the frequency of the field exceeds
the reciprocal relaxation time of the system and substantially exceeds the escape rate. The LS
relates the probability of large fluctuations in the presence of an external field to the relaxational
dynamics in thermal equilibrium. We have shown that the LS for escape displays frequency
dispersion which is qualitatively different from that of the conventional linear susceptibility.
We have also verified experimentally the predicted [6] switching between different branches of
the activation energy as a function of the field parameters for biharmonic driving: adjustment
of its phase (alone) is sufficient to select the escape path.
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