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Abstract. Thermally activated escape in the presence of a periodic external field is investigated
theoretically and through analogue experiments and digital simulations. The observed variation
of the activation energy for escape with driving force parameters is accurately described by the
logarithmic susceptibilityLS). The frequency dispersion of the LS is shown to differ markedly from

the standard linear susceptibility. Experimental data on the dispersion are in quantitative agreement
with the theory. Switching between different branches of the activation energy is demonstrated for
a nonsinusoidal (biharmonic) force.

Thermally activated escape plays a fundamentally important role in a variety of phenomena,
ranging from diffusion in solids and on solid surfaces to chemical reactions. It is therefore
important to find ways of controlling escape rates. One possible approach is through the
application of an ac field, which can sometimes give rise to a very strong response. The
underlying mechanism is readily understood for low-frequency (adiabatically slow) driving,
where the system remains in quasi-equilibrium under the instantaneous value of the driving
force. For a system in thermal equilibrium, the probability of a large fluctuation is given by

W o exp[-R/kT]. 1)

We will be specifically interested in activated escape, in which &isethe activation energy
of escape. The driving force modulates the valugRajuasistatically and, even where the
modulation amplituded is small compared witlR, it may still substantially exceekr, in
which caseW will be changed exponentially strongly. We emphasize that the change of the
activation energy itinear in the field amplitude in this case.

A different picture might be expected for higher field frequencies, where the driving
becomes nonadiabatic. One might suppose that any chagednld depend on thatensity
I of the driving field rather than just be linear in the fialtplitudeA oc 7%/2, i.e., that the field
would give rise to an effective ‘heating’ of the system. Such an effect has indeed been discussed
and observed for low field intensities [1-4]. A complete theoretical analysis is significantly
more complicated in this case, since one may no longer assume that the system is in thermal
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equilibrium, so that the activation energyin equation (1) may not be set equal to the height
of the free-energy barrier. Numerical results in relation to this problem have been obtained for
different models: see [5] and references therein.

For high-frequency driving, the quantity of primary interest is the period-averaged escape
rate W. Recently it was suggested theoreticallly [6, 7] that, for high-frequency drivifig In
should still be linear in the field amplitudg, i.e. that the activation energy in equation (1)
for W should—quite counterintuitively—Dbe linear i. The proportionality coefficient was
called thdogarithmic susceptibilitfLS).

Just like the conventional linear susceptibility, the LS relates the response of the system in
the presence of external driving to the system dynamics in thermal equilibrium in the absence of
the driving field. Also, in common with the conventional susceptibility, the LS should display
frequency dispersion. This dispersion provides a basis for the selective control of escape rates.

The goals of this letter are, first, to validate the idea of the LS, thereby providing a solid
experimental basis for understanding the effect of an ac field on escape rates and, secondly, to
develop a general theory of tfrequency dispersioaf the LS. The theory exploits the acausal
character of the LS for escape. The measurements are done through analogue electronic
experiments [8] and digital simulations [9] of the escape rate in a driven system. Results of
such experiments are reported below for a broad range of frequencies and amplitudes of the
driving field, as well as for a nonsinusoidal field. We provide detailed comparisons of the data
with the theory. An additional important aim of the paper is to show that, given a system, its
LS can be measured directly by experiment. This paves the way for using ac fields for selective
control of escape rates (and also of diffusion and nucleation [6, 7]), even where the dynamics
of the system are not known and have to be determined experimentally.

We consider fluctuations of an overdamped Brownian particle driven by a periodic (but
not necessarily sinusoidal) ford&(r) and white Gaussian noigér),

q=K(g,1)+&() K(g.t)=-U'(@) +F() @)

where(é(t)&(t))) = 2D§(t — t’). The noise intensityp = kT if relaxation and fluctuations
are due to coupling to a thermal bath at temperalure

The model (2) is used in many scientific contexts (see e.g. [10-12] and references therein).
We assume that the potentidly) in (2) has a metastable minimum from which the system
can escape. For convenience, experimental data are obtained for a potential with two wells,
so that forF () = 0 the system is bistable and can switch between the stable states due to
fluctuations.

The idea underlying the theory of the LS [6, 7] is that, although the motion of the fluctuating
system is random, in a large rare fluctuation from a metastable state to a remote state, or in a
fluctuation resulting in escape, the system is most likely to move along a particular trajectory
known as the optimal, or most probable path (see [13—-17] and references therein). This path
provides a minimum to the functional

Md=%[ di[g - K(q. 0] 3)

The minimum is taken over all instanton-type [18] trajectories which statt for —oo from
the stable periodic statg (z) of the dynamical systeign = K (¢, t), and approach the unstable
periodic state of this system (1) ast — oo.

In the absence of drivingq{ = 0) the variational problem has a simple solutigh (r),
which is given by the equation

§®=U'. @



Letter to the Editor L323

Clearly, the most probable escape path (4) is just the time-reversed path from the unstable
steady state at the tap, of the potential barriel/(¢) down to the potential minimum at
4. [19,20]. The value oR[q] in this case is equdl (¢,) — U (q,)-

If the periodic driving forceF (r) = ), Fi explikwr) is comparatively weak, the leading-
order correctior R to the activation energy of escape can be evaluated along the unperturbed
most probable escape patt? (1)

SR = minéR([c) SR(t.) = ZFkX(kw)eika)tc
t -

o0 . 5)
() = —/ dr ¢© ()€,

Here,x (w) isthe LS for escape. Itis given [6, 7] by the Fourier transform of the velocity along
the most probable escape patf (¢) in the absence of drivingA(r) = 0).
Equation (5) can be understood in terms of Whark that the field does on the system as
it moves along the optimal path. One may expect this work to be related to the field-induced
change in the activation energyfor the corresponding large fluctuation. This chandm&sar
in the field, provided that the field-induced change of the optimal path itself remains small.
Animportant feature of equation (5) is the minimization ayeft corresponds to choosing
the position of the centre of the instantonic escape p&tky — 7.) so as to maximize the work
the field F(z) does on the system along it.
Unlike the standard linear susceptibility [21] which, on causality arguments, is given by
a Fourier integral over time from 0 teo, the LS x (w) is given by an integral from-oo to
oo. The analytic properties gf (w) therefore differ from those of the standard susceptibility,
and in particular their high-frequency asymptotics qualitatively different. The standard
susceptibility for damped dynamical systems decays as a power law fordatgey., as
1/[U"(g,) —iw], for the model (2)). In contrast, from (5), the LS decreasqgmnentiallyfast.
Asymptotic behaviour of (w) for large positives can be found by shifting the contour of
integration in (5) over from the real axis to the upper half of the completane, as shown in
figure 1. The functiog © (1) (4) has poles or branching points at i 0, which correspond
to the singularities o/’ (¢) in the complexg-plane, i.e. for Imy # 0. For largew, the major
contribution toy (w) is determined by the parts of the integration contour in figure 1 near the
singularity of¢© () with the smallest value of Im = 7,. Near the singular point one can
change from integrating overto integrating oveg, which gives for exfwr,) > 1

Im /dq/U’(q)‘. (6)

Here, the integral is taken from any point in the interégl g,) to the (complex) position,, of
the appropriate singularity éf'(¢) corresponding to the singularity ' (r —z,) atIm¢ = Tp.
The prefacto/ depends on the form &f (¢) nearg,. In particular, for a polynomial potential
(Igp] = oo) with U(g) = Cq"/n for |q| — oo, we have

M| = 27|w/C|"|v]"*/v! v=1/(n—2). (7)

!

. Figure 1. Contour of integration over time in (5) for the analysis of the
p behaviour of the logarithmic susceptibility(w) for large positivew; ), is
the smallest imaginary value ovhereq© (1) has a singularity.

() = Me™l°lw 7, = Mmin
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Figure 2. The dependence of the activation enem®yon the amplitudeA of the harmonic
driving forceF (t) = A cog1.2¢) as determined by electronic experiment (open circles), numerical
simulation (filled circles) and analytic calculation (solid line) based on (5); the dash-dotted line is
a guide to the eye. Inset: the absolute value of the LS of the sygtem| (5) measured (open and
filled squares for experiment and numerical simulation, respectively) and calculated (full curve) as
a function of frequency.

This expression applies also for finiig, |, with U(g) ~ C/u(g — gp)* for g — ¢q,, if nin
(7) is replaced by-u: note that M| then decreases with increasing

The notion of the LS applies not only to escape, but also to the probability of a large
fluctuation to any given state, in which case the integral over time in (5) is taken to the moment
of arrival in this state, and there is no minimization ox€i7]. The analytic properties of this
LS are similar to those of the standard linear susceptibility.

We have investigated the escape rate for a driven Duffing oscillator with the potential
U(qg) = —q?/2 +q*/4. If the state occupied initially ig, = —1, we obtain from (5)

¢ () = exp(2n)[1 + exp(21)] %2, (8)
and therefore the LS
l1-iw 2+iw
~ _ 12
X(w)=—7 F(—Z )F( 5 ) 9)

It follows from (9) thaty (0) = —1, and the LS decays monotonically with increasingvith

1, =7n/2,M = —(1 +i)(rw)¥?in (6). Already foro > 0.7 the asymptotic behaviour of

| X (w)| given by (6) becomes very close to the exact result equation (9) which is shown with a
solid curve in the inset of figure 2.

The period-averaged rate of escape from the stablegtat@n be found conveniently in
experiment from measurements of the mean tirhéo reach a poing, well behind the barrier
top (so that the probability of returning to the vicinity @f is negligibly small). Our main
quantity of interest is the field-dependent correctioite= 1/(z). Itis given by exg—8 R/ D)
for |5R| > D [6,7,22]. For a sinusoidal driving force, the correction to the activation energy
of escape (5) ISR = —2|F1 5 (w)].

To test these predictions, we built an analogue electronic model [8] of (2) for the double-
well Duffing potential. We drove it with zero-mean quasi-white Gaussian noise from a
shift-register noise generator, digitized the respan@g and analysed it with a digital data
processor. We also carried out a complementary digital simulation, using a high-speed pseudo-
random generator [9].
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The analogue and digital measurementskafivolved noise intensities.028 < D <
0.036 and 020 < D < 0.028, respectively; the lowest (real time [8]) driving frequency used
was 460 Hz. The results are plotted in figure 2. The major observation is that, as preglicted,
is indeedinear in the force amplitudeX = ;11 for F = 0). The slope yields the absolute value
of the LS. Its frequency dependence, a fundamental characteristic of the original equilibrium
system, is compared with the theoretical predictions in the inset of figure 2.

The results demonstrate that the variation of the activation energy with field can be well
described analytically, for a wide range of parameter values, in terms of the LS. We note,
however, a small deviation from the theory at small amplitudes of the external drive, and the
consequent systematic shift of the experimental and numerical points above the theory (solid
line). This deviation arises as a result of the finite noise intensities used in the experiment,
and the fact that th® — 0 limit of the theory breaks down for amplitudésof the external
driving for which|x F|/ D is small; it can be accounted for by an extension [22] of the theory
taking account of changes in the prefactor.

We now discuss some of the new effects that are to be expected [6] when the driving
field is nonsinusoidal. They are related to the minimization ayén (5), which is what
makes the logarithm of the escape rate a nonanalytic functigi(ofin the D — 0 limit.

We can apply the theory (5) to describe the dependence of the activation energy on field
parameters. In particular, we seek experimentallysivéchingbetween escape paths that

is predicted [6] for a simple form of nonsinusoidal driving: the biharmonic field. We took
F(t) = 0.1cog1.2r) + 0.3cog2.4t + ¢9) and investigated the effect of altering the phase
differenceg, between the two sinusoidal components. For a field of this KiRdz.) (5) may

have two local minima; but the activation energy will of course correspond t@bislute
minimum. Thus, agy is changed, the escape path will switch from being determined by one
local minimum to being determined by the other, analogous to a first-order phase transition in
which § R ands. play the roles of the free energy and the order parameter, respectively.

This phenomenon can be demonstrated experimentally by direct observation of the two
different escape pathst providing the two local minima Bfz.). Within a critical range of
oo, the two escape paths should coexist and be observable experimentally: by variation of the
phase difference near its critical value within this range, one should observe switching between
the two different escape paths. The effect s clearly evident in the analogue data of figiires 3(
and @): a small change i is sufficient to switch the predominant escape path fgom 1
in(@tog ~5in (b).

It follows from the above analysis that the absolute value of the logarithmic susceptibility
can be recovered from measurements of the correétioto the escape activation energy at
different frequencies of a sinusoidal driving field. Tpteaseof the LS argy (w) can be found
by measuring R for a driving field with more than one harmonic. In particular, for biharmonic
driving with period 2r/w, we see from equation (5) th&R depends on the phase of LS in
terms of the facto® (w) = 2 argx (w) — argy (2w). The solution of this functional equation
for argyx (w), with the boundary condition arg(0) = 0, has the form

argx (w) = wt, + Z 2719 (2% w). (10)
k=0

This expression relates afgw) to the values 08 at the subharmonics2w of the frequency
o (due to the analyticity of (w) atw — 0, the function® (w) is quadratic inw for w — 0,
and therefore the series (10) converges).

T The coexistence of different escape paths in nonequilibrium systems has been widely discussed. See e.g. [23—-25]
for theory, and [20, 26] for theory and experimental tests.
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Figure 3. Sections ay = —0.5 through the prehistory distributiopy,, of escape paths from the
attractor aly = —1, measured (histograms) in the analogue electronic experiment for two phase
differences of the biharmonic driving force close to the critical valugoot 3.57: @) ¢o = 3.04;

and 0) o = 4.04. The smooth curves represent the theory. It is evident that, within the critical
range, a small change iy is sufficient to cause switching of the dominant escape path.

In conclusion, we have shown experimentally that thermally activated escape under
nonequilibrium conditions can be understood in terms of the logarithmic susceptibility, and that
the latter is a physically observable quantity: the field-induced change of the activation energy
for escape idinear in the field amplitude [6, 7] even where the frequency of the field exceeds
the reciprocal relaxation time of the system and substantially exceeds the escape rate. The LS
relates the probability of large fluctuations in the presence of an external field to the relaxational
dynamics in thermal equilibrium. We have shown that the LS for escape displays frequency
dispersion which is qualitatively different from that of the conventional linear susceptibility.
We have also verified experimentally the predicted [6] switching between different branches of
the activation energy as a function of the field parameters for biharmonic driving: adjustment
of its phase (alone) is sufficient to select the escape path.

Discussions with B Golding and M Arrag are warmly acknowledged. The work was
supported by the Engineering and Physical Sciences Research Council (UK) under grant
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